# Density-structure predictions of silicate glasses containing Ga<sub>2</sub>O<sub>3</sub>

H. DOWEIDAR, G. EL-DAMRAWI, S. ABD EL-MAKSOUD Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, POB 83, Egypt E-mail: sinfac@mum.mans.eun.eg

The density data of Li<sub>2</sub>O-, Na<sub>2</sub>O-, CaO- and BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses have been analyzed. The analysis is based on a structural model predicted from the results of the current spectroscopic investigations. It is assumed that for (R<sub>2</sub>O or RO)/Ga<sub>2</sub>O<sub>3</sub> = 1 the modifier oxide is used only by the gallate network to form GaO<sub>4</sub> tetrahedra without non-bridging oxygen ions. For 1 < (R<sub>2</sub>O or RO)/Ga<sub>2</sub>O<sub>3</sub> ≤ 2 the excess of modifier form non-bridging oxygen ions in the gallate network. There is a remarkable difference between the determined and the calculated density for Ga<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> > 0.75. This is suggestive for a different distribution of the modifier oxide between the two networks. Empirical relations have been obtained to calculate the density as a function of the composition. © *2002 Kluwer Academic Publishers* 

## 1. Introduction

Glasses containing pronounced contents of Ga<sub>2</sub>O<sub>3</sub> are of special importance owing to their high refractive index and density [1, 2]. Some of these glasses are characterized with high infrared transmission and nonlinear optical coefficients [3-6]. It is believed that  $Ga_2O_3$ enters the glass structure mostly in the form of GaO<sub>4</sub> tetrahedra as a network former [2, 3-9]. In this case the excess negative charge of GaO<sub>4</sub> tetrahedra must be compensated by a positive charge. Lapp and Shelby [10] indicated that in 20R<sub>2</sub>O-20Ga<sub>2</sub>O<sub>3</sub>-60SiO<sub>2</sub> glasses (R<sub>2</sub>O refers to alkali oxides) the charge compensation takes place through association of R<sub>2</sub>O with Ga<sub>2</sub>O<sub>3</sub> to form GaO<sub>4</sub> units. Therefore non-bridging oxygen ions could not form in the silica sites. On the other hand Miyaji et al. [8] assumed that in  $50PbO \cdot 50GaO_{1.5}$ and  $80BiO_{1.5} \cdot 20GaO_{1.5}$  glasses there is a fraction of about 10% of six-coordinated Ga<sup>3+</sup> ions. The latter can form in the case of a shortage in oxygen to maintain charge compensation. These trends are consistent with those observed from NMR studies on Cs<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub> glasses [9]. In these glasses almost all the gallium atoms form GaO<sub>4</sub> tetrahedra when the  $Ga_2O_3/Cs_2O$  ratio is less than 3/7. Upon increasing this ratio, the excess of  $Ga_2O_3$  enters the structure as  $GaO_6$ units.

In previous studies [11–15] the densities of different glass systems were analyzed to get the volumes of the structural units present in the glass. The analysis is based on the available structural information for each glass system. The present work is an investigation of the density-structure relations in  $Li_2O-Ga_2O_3$ -SiO<sub>2</sub>, Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses.

## 2. Procedure

The structural role of Ga<sub>2</sub>O<sub>3</sub> in oxide glasses is, to a great extent, similar to that of Al<sub>2</sub>O<sub>3</sub>. Both of these oxides have insufficient oxygen to form a tetrahedral network. Ga<sup>3+</sup> and Al<sup>3+</sup> cations become fourcoordinated with oxygen if there were sufficient oxygen ions from the modifier oxides in the glass. In alkali alumino-silicate glasses Al<sub>2</sub>O<sub>3</sub> associates itself with an equivalent quantity of alkali oxide R<sub>2</sub>O (in mol%) to form AlO<sub>4</sub> tetrahedra [15, 16]. The transformation takes place at a rate of two AlO<sub>4</sub> units for each molecule of R<sub>2</sub>O. A similar behavior can be assumed for Ga<sub>2</sub>O<sub>3</sub> in silicate glasses. Besides, it is believed that the Ga atoms are more likely than Al atoms in forming fourfold coordination rather than sixfold coordination [17]. There is, however, a basic difference between the AlO<sub>4</sub> and GaO<sub>4</sub> tetrahedra. The former can be incorporated into the structure only through bridging oxygen ions, whereas the latter can form NBOs [2, 8, 17–19] in the presence of sufficient modifier oxide concentration.

It has been indicated that NBOs appear in alkali and alkaline earth gallate glasses when the modifier oxide content exceeds about 43 mol% [17]. The fraction of GaO<sub>4</sub> tetrahedra containing NBOs increases when increasing the modifier oxide. Furthermore, Fukumi and Sakka [20] reported that in a  $30Cs_2O \cdot 70Ga_2O_3$ glass the Ga<sup>3+</sup> ions mainly form GaO<sub>4</sub> tetrahedra and there is about 15% of GaO<sub>6</sub> octahedra. This agrees with the assumption that GaO<sub>6</sub> units are formed when there is a deficiency of oxygen in the gallate matrix. In such a case there are some three-coordinated oxygens (shared by three GaO<sub>4</sub> tetrahedra). On the other hand, in a 66.7CaO  $\cdot$  33.3Ga<sub>2</sub>O<sub>3</sub> glass the gallate network contains only  $GaO_4$  tetrahedra and there are neither  $GaO_6$  units nor three-coordinated oxygens [20].

Ruller and Jewell [19] employed Raman and infrared spectroscopies to investigate the structure of the glasses (80 - x)PbO-(10 + x) Ga<sub>2</sub>O<sub>3</sub>-10SiO<sub>2</sub> ( $5 \le x \le$ 25 mol%) and (75 - x/2) PbO-(25 - x/2)Ga<sub>2</sub>O<sub>3</sub>xSiO<sub>2</sub> ( $0 \le x \le 20$  mol%). In all these glasses NBOs could be detected in the gallium tetrahedra whereas there were no signs for the presence of NBOs in the silica sites. This may indicate that the GaO<sub>4</sub> tetrahedra have priority to form NBOs when they are found with SiO<sub>4</sub> tetrahedra in the structure.

On the basis of the above-mentioned assumptions the structure of a glass having the molar formula  $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$  would depend on the values of x, y and z. For  $(y \le x \le 2y)$  Ga<sub>2</sub>O<sub>3</sub> is incorporated in the structure, at first, as GaO<sub>4</sub> units by consuming an equivalent R<sub>2</sub>O or RO quantity. In this case each Ga<sub>2</sub>O<sub>3</sub> molecule would produce two GaO<sub>4</sub> tetrahedra without NBOs. In addition, the remaining modifier oxide would be consumed in the formation of NBOs in the gallate network with a rate of one NBO ion per GaO<sub>4</sub> unit. In such glasses the SiO<sub>2</sub> content would be in the form of SiO<sub>4</sub> tetrahedra without NBOs (Q<sub>4</sub> units).

In the light of the above mentioned assumptions, the structural units in a  $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$  glass having  $y \le x \le 2y$  form as

$$xR_2O + yGa_2O_3 + zSiO_2 \rightarrow [2y - 2(x - y)]$$
$$\times G_4 + 2(x - y)G_3 + zQ_4 \tag{1}$$

where  $G_4$  and  $G_3$  are  $GaO_4$  tetrahedra containing four and three bridging oxygen ions, respectively. The density *D* of the glass can be given as

$$D = \{ [2y - 2(x - y)]M_{G4} + 2(x - y)M_{G3} + zM_{S4} \} / \\ \{ [2y - 2(x - y)]V_{G4} + 2(x - y)V_{G3} + zV_{S4} \}$$
(2)

where  $M_{G4}$  is the mass of the GaO<sub>4</sub> tetrahedron without NBOs (the mass of Ga<sup>3+</sup> + 2O<sup>2-</sup> + R<sup>+</sup>),  $M_{G3}$  is the mass of the G<sub>3</sub> unit containing one NBO ion (the mass of Ga<sup>3+</sup> + 2.5O<sup>2-</sup> + 2R<sup>+</sup>) and  $M_{S4}$  is the mass of the Q<sub>4</sub> unit (the mass of Si<sup>4+</sup> + 2O<sup>2-</sup>).  $V_{G4}$ ,  $V_{G3}$ , and  $V_{S4}$  are the volumes of the G<sub>4</sub>, G<sub>3</sub> and Q<sub>4</sub> units respectively. The volume of a structural unit is the volume of the constituting ions besides its portion of the free volume in glass.

CaO and BaO are assumed to enter the glass network as modifier oxides [21]. In a CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glass it can be assumed that each CaO molecule converts a Ga<sub>2</sub>O<sub>3</sub> molecule producing two GaO<sub>4</sub> units. The same is to be considered for BaO in BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. In these cases a GaO<sub>4</sub> tetrahedron would include a half Ca<sup>2+</sup> or Ba<sup>2+</sup> ion whereas the G<sub>3</sub> unit includes one of these ions.

### 3. Results

Fig. 1 shows the dependence of the determined density  $(D_m)$  on the composition for Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>



*Figure 1* Dependence of the determined density  $D_{\rm m}$  of Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses on the Na<sub>2</sub>O content. At a specific content of Na<sub>2</sub>O  $D_{\rm m}$  increases due to the increase in the concentration of Ga<sub>2</sub>O<sub>3</sub> at the expense of SiO<sub>2</sub> (compare with Table I). The error limit is estimated as  $\pm 1\%$ . The data are taken from references [24–28, 33].

glasses (as an example of the studied glasses). This presentation enables to understand how the composition varies the density of glass. As an example in Fig. 1 it is shown that, at Na<sub>2</sub>O = 13 mol%, the density increases greatly with increasing the Ga<sub>2</sub>O<sub>3</sub> content (compare with Table I). This reflects a strong influence of the Ga<sub>2</sub>O<sub>3</sub> concentration on the density of such glasses. In Fig. 2 is shown that the ratio Ga<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> predominates the change in density. The behaviour observed in Figs 1 and 2 is also found for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The

TABLE I Compositions, determined densities  $D_m$  [24–28, 33] and calculated densities  $D_c$  for Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses

| Na <sub>2</sub> O<br>(mol%) | Ga <sub>2</sub> O <sub>3</sub><br>(mol%) | SiO <sub>2</sub><br>(mol%) | $D_{\rm m}$<br>(g/cm <sup>3</sup> ) | $D_{\rm c}$<br>(g/cm <sup>3</sup> ) |
|-----------------------------|------------------------------------------|----------------------------|-------------------------------------|-------------------------------------|
| 13                          | 1.5                                      | 85.5                       | 2.372                               | 2.384                               |
| 13                          | 3                                        | 84                         | 2.423                               | 2.437                               |
| 13                          | 4.5                                      | 82.5                       | 2.472                               | 2.489                               |
| 13                          | 6                                        | 81                         | 2.539                               | 2.540                               |
| 13                          | 9                                        | 78                         | 2.64                                | 2.635                               |
| 13                          | 13                                       | 74                         | 2.77                                | 2.755                               |
| 16.66                       | 8.33                                     | 75.01                      | 2.682                               | 2.648                               |
| 16.66                       | 12.5                                     | 70.84                      | 2.804                               | 2.775                               |
| 16.66                       | 16.66                                    | 66.68                      | 2.9                                 | 2.896                               |
| 20                          | 10                                       | 70                         | 2.744                               | 2.732                               |
| 20                          | 20                                       | 60                         | 3.039                               | 3.022                               |
| 25                          | 15                                       | 60                         | 2.943                               | 2.932                               |
| 25                          | 25                                       | 50                         | 3.203                               | 3.207                               |
| 30                          | 5                                        | 65                         | 2.658                               | 2.651                               |
| 30                          | 10                                       | 60                         | 2.802                               | 2.822                               |
| 12.5                        | 12.5                                     | 75                         | 2.717                               | 2.736                               |
| 18.3                        | 11.7                                     | 70                         | 2.79                                | 2.767                               |
| 21                          | 11.3                                     | 67.7                       | 2.792                               | 2.782                               |
| 24.2                        | 10.8                                     | 65                         | 2.809                               | 2.796                               |
| 26.7                        | 20                                       | 53.3                       | 3.066                               | 3.091                               |
| 28.6                        | 14.3                                     | 57.1                       | 2.923                               | 2.949                               |
| 30.3                        | 9.1                                      | 60.6                       | 2.775                               | 2.795                               |
| 31.7                        | 4.8                                      | 63.5                       | 2.644                               | 2.660                               |
| 35*                         | 30                                       | 35                         | 3.338                               | 3.442                               |
|                             |                                          |                            |                                     |                                     |

\*Glasses having (Ga<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>) > 0.75, also in Tables III and IV.

TABLE II Compositions, determined densities  $D_m$  [22, 23, 33] and calculated densities  $D_c$  for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses

| Li <sub>2</sub> O<br>(mol%) | Ga <sub>2</sub> O <sub>3</sub><br>(mol%) | SiO <sub>2</sub><br>(mol%) | $D_{\rm m}$<br>(g/cm <sup>3</sup> ) | $D_{\rm c}$<br>(g/cm <sup>3</sup> ) |
|-----------------------------|------------------------------------------|----------------------------|-------------------------------------|-------------------------------------|
| 12.5                        | 12.5                                     | 75                         | 2.743                               | 2.750                               |
| 16.7                        | 16.7                                     | 66.6                       | 2.918                               | 2.916                               |
| 20                          | 20                                       | 60                         | 3.065                               | 3.047                               |
| 25                          | 25                                       | 50                         | 3.245                               | 3.248                               |
| 27.5                        | 27.5                                     | 45                         | 3.337                               | 3.349                               |
| 16                          | 12                                       | 72                         | 2.758                               | 2.752                               |
| 20                          | 12.5                                     | 67.5                       | 2.801                               | 2.792                               |
| 20                          | 15                                       | 65                         | 2.886                               | 2.879                               |
| 25                          | 15                                       | 60                         | 2.921                               | 2.912                               |
| 27.5                        | 18.1                                     | 54.4                       | 3.032                               | 3.038                               |
| 30                          | 20                                       | 50                         | 3.108                               | 3.124                               |
| 20                          | 10                                       | 70                         | 2.706                               | 2.702                               |
| 27.5                        | 10.4                                     | 62.1                       | 2.76                                | 2.757                               |
| 30                          | 14                                       | 56                         | 2.907                               | 2.909                               |
| 25                          | 10.5                                     | 64.5                       | 2.76                                | 2.747                               |
| 30                          | 10                                       | 60                         | 2.767                               | 2.756                               |
| 20                          | 5                                        | 75                         | 2.5                                 | 2.512                               |
| 25                          | 5                                        | 70                         | 2.54                                | 2.533                               |
| 30                          | 5                                        | 65                         | 2.557                               | 2.555                               |
| 35                          | 5                                        | 60                         | 2.584                               | 2.579                               |
| 20                          | 2.5                                      | 77.5                       | 2.392                               | 2.414                               |



*Figure 2* Dependence of the determined density  $D_{\rm m}$  on the ratio Ga<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> for Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The error limit is estimated as ±1%. The data are taken from references [24–28, 33]. The solid line is a guide for the eye.

density data are taken from different sources [22–33]. The data are given in Tables I–IV.

### 4. Discussion

Equation 2 can be used to calculate the volumes of the structural units in  $xR_2O \cdot yGa_2O_3 \cdot zSiO_2$  glasses. For x = y Equation 2 can be rewritten as

$$D = (2yM_{G4} + zM_{S4})/(2yV_{G4} + zV_{S4}).$$
(2-a)

In Tables I–IV there are some glasses in each system verifying the condition x = y. For example, Fig. 3 shows the dependence of  $D_m$  on the SiO<sub>2</sub> content for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses having Li<sub>2</sub>O/Ga<sub>2</sub>O<sub>3</sub> = 1. There is a linear decrease in  $D_m$  as the SiO<sub>2</sub> content

TABLE III Compositions, determined densities  $D_m$  [29–31, 33] and calculated densities  $D_c$  for CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses

| CaO<br>(mol%) | Ga <sub>2</sub> O <sub>3</sub><br>(mol%) | SiO <sub>2</sub><br>(mol%) | $D_{\rm m}$<br>(g/cm <sup>3</sup> ) | $D_{\rm c}$<br>(g/cm <sup>3</sup> ) |
|---------------|------------------------------------------|----------------------------|-------------------------------------|-------------------------------------|
| 12.5          | 12.5                                     | 75                         | 2.846                               | 2.867                               |
| 15            | 10                                       | 75                         | 2.776                               | 2.802                               |
| 15            | 15                                       | 70                         | 2.985                               | 2.992                               |
| 19            | 19                                       | 62                         | 3.202                               | 3.193                               |
| 20            | 10                                       | 70                         | 2.858                               | 2.864                               |
| 20            | 15                                       | 65                         | 3.073                               | 3.057                               |
| 20            | 20                                       | 60                         | 3.262                               | 3.244                               |
| 25            | 15                                       | 60                         | 3.154                               | 3.126                               |
| 25            | 25                                       | 50                         | 3.509                               | 3.498                               |
| 30            | 30                                       | 40                         | 3.728                               | 3.755                               |
| 35*           | 35                                       | 30                         | 3.912                               | 4.015                               |
| 38*           | 38                                       | 24                         | 3.998                               | 4.172                               |
| 40*           | 30                                       | 30                         | 3.826                               | 3.930                               |
| 40*           | 40                                       | 20                         | 4.079                               | 4.277                               |

TABLE IV Compositions, determined densities  $D_m$  [32, 33] and calculated densities  $D_c$  for BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses

| BaO<br>(mol%) | Ga <sub>2</sub> O <sub>3</sub><br>(mol%) | SiO <sub>2</sub><br>(mol%) | $D_{\rm m}$<br>(g/cm <sup>3</sup> ) | $D_{\rm c}$<br>(g/cm <sup>3</sup> ) |
|---------------|------------------------------------------|----------------------------|-------------------------------------|-------------------------------------|
| 20            | 20                                       | 60                         | 3.666                               | 3.661                               |
| 30            | 30                                       | 40                         | 4.276                               | 4.293                               |
| 20            | 15                                       | 65                         | 3.525                               | 3.515                               |
| 20            | 10                                       | 70                         | 3.362                               | 3.361                               |
| 40            | 20                                       | 40                         | 4.391                               | 4.408                               |
| 30            | 10                                       | 60                         | 3.796                               | 3.774                               |
| 40            | 10                                       | 50                         | 4.181                               | 4.203                               |
| 40*           | 30                                       | 30                         | 4.571                               | 4.659                               |
| 40*           | 40                                       | 20                         | 4.742                               | 4.885                               |



*Figure 3* Dependence of the determined density  $D_m$  on the SiO<sub>2</sub> content for Li<sub>2</sub>O · Ga<sub>2</sub>O<sub>3</sub> · SiO<sub>2</sub> glasses having Li<sub>2</sub>O/Ga<sub>2</sub>O<sub>3</sub> = 1. The data are taken from reference [33]. The solid line represents the fitting plot of the data.

increases. The straight-line in Fig. 3 can be represented by the relation:

$$D = -0.0199C + 4.240, \tag{3}$$

where *C* is the content of SiO<sub>2</sub> in (mol%). The density values obtained from Equation 3 can be used in Equation 2a to calculate  $V_{G4}$  and  $V_{S4}$ . This can be done

by taking the density of two compositions having y values close to each other. At the first approximation one may assume that  $V_{G4}$  and  $V_{S4}$  in both compositions are constants. As an example  $D = 3.0460 \text{ g/cm}^3$  for  $x = 20 \mod \%$  and 3.0261 g/cm<sup>3</sup> for  $x = 19.5 \mod \%$ . By solving Equation 2a simultaneously for these values one obtains  $V_{G4} = 42.24 \times 10^{-24}$  cm<sup>3</sup> and  $V_{S4} = 44.09 \times 10^{-24}$  cm<sup>3</sup>. These volumes would be considered for a glass having x = y = 19.75 mol% (the mean x value of the taken compositions). The obtained volumes are nearly constant (the change is less than 1% over the SiO<sub>2</sub> content investigated). The average values of the volumes are  $V_{G4} = (42.20 \pm 0.13) \times 10^{-24} \text{ cm}^3$ and  $V_{S4} = (44.08 \pm 0.08) \times 10^{-24} \text{ cm}^3$ . This value of  $V_{S4}$  is about 3% lower than that found for the vitreous SiO2, alkali and/or alkaline-earth silicate glasses  $(45.25 \times 10^{-24} \text{ cm}^3)$  [13, 15]. Similar reduction was observed in V<sub>S4</sub> for Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> [14] and Na<sub>2</sub>O- $B_2O_3$ -SiO<sub>2</sub> [34] glasses, i.e., in glasses containing different network forming units. It is assumed that this reduction is due to competition between the different network forming units to occupy space in the structure. The volumes obtained for  $V_{G4}$  and  $V_{S4}$  can be used in Equation 2 to calculate  $V_{G3}$  for glasses having  $(y < x \le 2y)$ . The average value obtained for  $V_{G3}$ is  $(50.93 \pm 0.68) \times 10^{-24}$  cm<sup>3</sup>.

The volumes obtained for  $V_{G4}$ ,  $V_{G3}$  and  $V_{S4}$  can in turn be used in Equation 2 to get the calculated density ( $D_c$ ). Fig. 4 shows the correlation between  $D_c$ and  $D_m$  for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses ( $\diamond$ -symbol). The agreement is quite good between the  $D_c$  and  $D_m$  values. Similar plots could be obtained for Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses (Figs 5–7, respectively). The data for  $D_c$  are given in Tables (I–IV). The  $D_c$  values were calculated following similar procedure to that used for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The volumes used for the G<sub>3</sub> units are given in Table V. The maximum difference between the  $D_c$  and  $D_m$  values for the investigated glasses is about  $\pm 1\%$ . Fukumi and Sakka [20] reported that the gallate



*Figure 4* The calculated density  $D_c$  in dependence of the determined density  $D_m$  ( $\Box$ ) for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The  $D_c$  values were obtained from Equations 2 ( $\diamond$ ) and 5 ( $\blacklozenge$ ) and the volumes given in Table V. The  $D_m$  data are taken from reference [22, 23, 33]. The solid line represents the fitting plot of the  $D_m$  values.



*Figure 5* The calculated density  $D_c$  in dependence of the determined density  $D_m$  ( $\Box$ ) for Na<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The  $D_c$  values were obtained from Equations 2 ( $\diamond$ ) and 5 ( $\blacklozenge$ ) and the volumes given in Table V. The  $D_m$  data are taken from reference [24–28, 33]. The solid line represents the fitting plot of the  $D_m$  values.



*Figure 6* The calculated density  $D_c$  in dependence of the determined density  $D_m$  ( $\Box$ ) for CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The  $D_c$  values were obtained from Equations 2 ( $\diamond$ ) and 5 ( $\blacklozenge$ ) and the volumes given in Table V. The  $D_m$  data are taken from reference [29–31, 33]. The solid line represents the fitting plot of the  $D_m$  values.



*Figure 7* The calculated density  $D_c$  in dependence of the determined density  $D_m$  ( $\Box$ ) for BaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The  $D_c$  values were obtained from Equations 2 ( $\diamond$ ) and 5 ( $\blacklozenge$ ) and the volumes given in Table V. The  $D_m$  data are taken from reference [32, 33]. The solid line represents the fitting plot of the  $D_m$  values.

| TABLE V Volumes | of the structural | units in the | glasses | investigated |
|-----------------|-------------------|--------------|---------|--------------|
|-----------------|-------------------|--------------|---------|--------------|

| Glass type                                                         | $V_{\rm G4}~(10^{-24}~{\rm cm}^3)$ | $V_{\rm G3}~(10^{-24}~{\rm cm}^3)$ | $V_{\rm S4}~(10^{-24}~{\rm cm}^3)$ | $V_{\rm S3}~(10^{-24}~{\rm cm}^3)$ |
|--------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Li <sub>2</sub> O-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> | 42.18                              | 50.93                              | 44.08 (45.25) <sup>a</sup>         | 52.97 (52.97) <sup>a</sup>         |
| Na <sub>2</sub> O-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> | 51                                 | 66                                 | 44.7 (45.25) <sup>a</sup>          | 60.5 (60.5) <sup>a</sup>           |
| CaO-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub>               | 42.03                              | 53.8                               | 44.29 (45.25) <sup>a</sup>         | 53.5 (54.5) <sup>a</sup>           |
| BaO-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub>               | 51.95                              | 71.5                               | 44.1 (45.25) <sup>a</sup>          | 61.95 (60.95) <sup>a</sup>         |

<sup>a</sup>Values for the corresponding binary alkali- or alkaline earth silicate glasses [12, 13, 15].

network in a 66.7CaO  $\cdot$  33.3Ga<sub>2</sub>O<sub>3</sub> glass consists of GaO<sub>4</sub> tetrahedra only. They gave the density of that glass as 4.62 g/cm<sup>3</sup>. By using Equation 2 and the volumes given in Table V for CaO-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> one obtains a  $D_c$  value of 4.624 g/cm<sup>3</sup>.

In Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses [14] Al<sub>2</sub>O<sub>3</sub> has priority to associate itself with an equimolar quantity of Na<sub>2</sub>O to form AlO<sub>4</sub> tetrahedra. The excess of Na<sub>2</sub>O incorporates into the silicate network producing NBOs. Moreover, in R<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses NBOs can form in both the borate and the silicate networks after reaching the maximum concentration of  $BO_4$  units [34, 35]. These effects may indicate that NBOs start to form in the SiO<sub>4</sub> sites when the prior processes become saturated. In analogy it can be assumed that in R<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses the excess of modifier oxide, that remains after complete conversion of G<sub>4</sub> units into G<sub>3</sub> ones, would associate with the SiO<sub>2</sub> content to produce SiO<sub>4</sub> units with NBOs. At the first step, Q<sub>3</sub> units would be produced. These are SiO<sub>4</sub> tetrahedra containing one NBO ion per tetrahedron. The Q<sub>3</sub> units can form in glasses having x > 2y and  $(x - y)/z \le 0.5$ . In Table I the glasses having 2y < x fulfill the last condition.

By taking these assumptions in consideration, the distribution of the structural units in  $xR_2O-yGa_2O_3-zSiO_2$  glasses having x > 2y and  $(x - y)/z \le 0.5$  would be

$$xR_2O + yGa_2O_3 + zSiO_2 \rightarrow 2yG_3$$
  
+  $2(x - 2y)Q_3 + [z - 2(x - 2y)]Q_4.$  (4)

The density of such glasses is then

$$D = \{2yM_{G3} + 2(x - 2y)M_{S3} + [z - 2(x - 2y)]M_{S4}\}/$$
  
$$\{2yV_{G3} + 2(x - 2y)V_{S3} + [z - 2(x - 2y)]V_{S4}\}.$$
  
(5)

Here  $M_{S3}$  is the mass of the Q<sub>3</sub> unit (the mass of Si<sup>4+</sup> + 2.5O<sup>2-</sup> + R<sup>+</sup>) and  $V_{S3}$  is its volume.

The densities of different silicate glasses [12–15, 36, 37] were used to calculate the volumes of structural units. It was found that the volumes of the units present in the binary silicate glasses are the same in more complicated ones. For example, the volume of the silicate units in Na<sub>2</sub>O-SiO<sub>2</sub> glasses [13] are the same in Na<sub>2</sub>O-Rb<sub>2</sub>O-SiO<sub>2</sub> glasses [36] and Na<sub>2</sub>O-CaO-SiO<sub>2</sub> [37]. This means that the volumes of the silicate units are independent of the glass matrix. Therefore, the volumes of the Q<sub>3</sub> units determined for R<sub>2</sub>O-SiO<sub>2</sub> and RO-SiO<sub>2</sub> glasses (Table V) can be used in Equation 5 to calculate the density of  $xR_2O-yGa_2O_3-zSiO_2$  glasses

| TABLE VI Densities of the structural | units in the glasses | investigated |
|--------------------------------------|----------------------|--------------|
|--------------------------------------|----------------------|--------------|

| Glass type                                                         | $D_{G4}$<br>(g/cm <sup>3</sup> ) | $D_{G3}$<br>(g/cm <sup>3</sup> ) | $D_{S4}$<br>(g/cm <sup>3</sup> ) | D <sub>S3</sub><br>(g/cm <sup>3</sup> ) |
|--------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------|
| Li <sub>2</sub> O-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> | 4.295                            | 4.030                            | 2.263                            | 2.364                                   |
| Na <sub>2</sub> O-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub> | 4.061                            | 3.917                            | 2.232                            | 2.500                                   |
| CaO-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub>               | 4.811                            | 4.624                            | 2.253                            | 2.736                                   |
| BaO-Ga <sub>2</sub> O <sub>3</sub> -SiO <sub>2</sub>               | 5.441                            | 5.730                            | 2.263                            | 23.666                                  |

having x > 2y and  $(x - y)/z \le 0.5$ . The agreement between the  $D_c$  and  $D_m$  values in the systems investigated, Figs 4–7 ( $\blacklozenge$ -symbol) and Tables (I–IV), is indicative for the validity of the presented structural model.

The densities of the structural units in the studied glasses are given in Tables VI. The density of a structural unit is obtained as (its mass/its volume). It can be noticed that the density of units in the gallate matrix is much higher than the density of the units in the silicate matrix. This explains the great difference in the density between the  $R_2O$  (or RO)-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> and the corresponding Ga<sub>2</sub>O<sub>3</sub>-free glasses (Fig. 1, as example).

It is noticed that the  $D_c$  values obtained from Equations 2 and 5 for the glasses having  $Ga_2O_3/SiO_2 > 0.75$ are markedly different from the experimental values (Table I–IV). This result reveals that there might be another distribution of the modifier oxide between the gallate and the silicate networks. Similar processes were reported for Na<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses, where the ratio  $SiO_2/B_2O_3$  plays the dominant role in the distribution of Na<sub>2</sub>O between SiO<sub>2</sub> and B<sub>2</sub>O<sub>3</sub>. It is assumed that for  $SiO_2/B_2O_3 = 1$  the alkali oxide associates with B<sub>2</sub>O<sub>3</sub> only, till NBOs start forming in the borate matrix [35]. On the other hand the distribution of Na<sub>2</sub>O is greatly different in glasses having  $SiO_2/B_2O_3 \le 0.5$ [38, 39]. The glasses treated in the present study have  $(x-2y)/z \le 0.5$ . In such glasses Q<sub>4</sub> units convert into Q<sub>3</sub> ones. It would be of interest to know how the alkali oxide would be distributed for (x - 2y)/z > 0.5, where Q<sub>2</sub> units (SiO<sub>4</sub> tetrahedra with two NBOs) can form from Q<sub>3</sub> units. Similarly, how would be the distribution of alkali oxide in glasses having  $Ga_2O_3/SiO_2 > 0.75$ ? Certainly more spectroscopic investigations are needed to explore the structure of those glasses.

The molar volume  $V_{m(D)}$  of a glass can be determined from the relation:

$$V_{\rm m(D)} = M/D \tag{6}$$

where *M* is the molecular weight of the glass. On the other hand, the molar volume can be calculated from the volumes of the structural units. For  $xR_2O$ - $yGa_2O_3$ - $zSiO_2$  glasses with  $y \le x \le 2y$  the calculated molar

volume  $V_{m(C)}$  can be obtained (according to Equation 2) as:

$$V_{m(C)} = \{ [2y - 2(x - y)] V_{G4} + 2(x - y) V_{G3} + z V_{S4} \} N_A.$$
(7)

Where  $N_A$  is Avogadro's number. Similarly for x > 2y and  $(x - y)/z \le 0.5V_{m(C)}$  would be:

$$V_{\rm m(C)} = \{2yV_{\rm G3} + 2(x - 2y)V_{\rm S3} + [z - 2(x - 2y)]V_{\rm S4}\}N_{\rm A}.$$
 (8)

Fig. 8 shows a good agreement between  $V_{m(C)}$  and  $V_{m(D)}$  for the studied Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses.

At a constant content of Li<sub>2</sub>O Equation 7 can be rewritten in another form. As an example, for  $0.2R_2O_yGa_2O_3$ - $(0.8 - y)SiO_2$  Equation 7 leads to:

$$V_{\rm m(C)} = y(4V_{\rm G4} - 2V_{\rm G3} - V_{\rm S4})N_{\rm A} + (0.4V_{\rm G3} - 0.4V_{\rm G4} + 0.8V_{\rm S4})N_{\rm A}.$$
 (9)



*Figure 8* The calculated molar volume  $V_{m(C)}$  in dependence of the determined molar volume  $V_{m(D)}$  ( $\Box$ ) (Equation 6) for Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. The  $V_{m(C)}$  values were obtained from Equations 7 ( $\diamond$ ) and 8 ( $\blacklozenge$ ) and the volumes given in Table V. The solid line represents the fitting plot of the  $V_{m(D)}$  values.



*Figure* 9 Molar volume as a function of the Ga<sub>2</sub>O<sub>3</sub> content in Li<sub>2</sub>O-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses with constant Li<sub>2</sub>O concentration (20 mol%). The symbol ( $\Box$ ) represents determined molar volume (Equation 6) and ( $\blacklozenge$ ) calculated molar volume (Equation 9). The lines represent the fitting plots of the data.

This is a straight-line relation having a slope that is  $(4V_{G4}-2V_{G3} - V_{S4})N_A$ . Fig. 9 represents the change of  $V_{m(D)}$  with Ga<sub>2</sub>O<sub>3</sub> content (mol%) for  $0.2R_2O$ - $yGa_2O_3$ - $(0.8 - y)SiO_2$  glasses. It is shown that  $V_{m(D)}$  increases linearly with increasing the content of Ga<sub>2</sub>O<sub>3</sub>. This is consistent with Equation 9. A quite good agreement is also shown in Fig. 9 between  $V_{m(D)}$  and  $V_{m(C)}$ . The agreement obtained reveals that the presented model is adequate to describe the structure of studied glasses.

## 5. Conclusion

The analysis in this study suggests a structural model for R<sub>2</sub>O or (RO)-Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses. For (R<sub>2</sub>O or RO)/Ga<sub>2</sub>O<sub>3</sub>  $\leq$  1 the modifier oxide is incorporated into the gallate matrix forming GaO<sub>4</sub> units without NBOs. In glasses having  $1 < (R_2O \text{ or } RO)/Ga_2O_3 < 2$  NBOs can be created in the gallate matrix. This proposition is based on the information available from the spectroscopic studies on Ga2O3-containing glasses. The agreement between the  $D_{\rm m}$  and  $D_{\rm c}$  values for (R<sub>2</sub>O or RO/ $Ga_2O_3 > 2$  suggests that the excess modifier oxide would associate with SiO<sub>2</sub> forming NBOs. The density of the glasses investigated is mainly determined by the densities of the structural units in the gallate matrix. Significant differences between the  $D_{\rm m}$  and the  $D_{\rm c}$  values for the glasses having  $Ga_2O_3/SiO_2 > 0.75$  suggest another distribution of the modifier oxide.

#### References

- 1. J. E. SHELBY, J. Amer. Ceram. Soc. 71 (1988), c254.
- 2. M. M. WIERZBICKI and J. E. SHELBY, *Phys. Chem. Glasses* **36** (1995) 150.
- 3. W. H. DUMBAUGH, *ibid.* 27 (1986) 119.
- 4. D. W. HALL, M. A. NEWHOUSE, N. F. BORRELLI, W. H. DUMBAUGH and D. L. WEIDEMAN, *Appl. Phys. Lett.* 54 (1989) 1293.
- 5. W. H. DUMBAUGH and J. C. LAPP, *J. Amer. Ceram. Soc.* **75** (1992) 2315.
- 6. J. C. LAPP, Am. Ceram. Soc. Bull. 71 (1992) 1543.
- 7. F. MIYAJI, K. TADANAGA, T. YOKO and S. SAKKA, J. Non-Cryst. Solids 139 (1992) 268.
- F. MIYAJI, T. YOKO, J. JIN, S. SAKKA, T. FUKUNAGA and M. MISAWA, *ibid*. **175** (1994) 211.
- 9. J. ZHONG and P. J. BRAY, *ibid.* 94 (1987) 122.
- 10. J. C. LAPP and J. E. SHELBY, *ibid.* 86 (1986) 350.
- 11. H. DOWEIDAR, Phys. Chem. Glasses 38 (1997) 69.
- 12. Idem., ibid. 39 (1998) 286.
- H. DOWEIDAR, S. FELLER, M. AFFATIGATO, B. TISHENDORF, C. MA and E. HAMMARSTEN, *ibid*. 40(6) (1999) 339.
- 14. H. DOWEIDAR, J. Non-Cryst. Solids 240 (1998) 55.
- 15. Idem., ibid. 249 (1999) 194.
- 16. G. EL-DAMRAWI, W. MÜLLER-WARMUTH, H. DOWEIDAR and I. A. GOHAR, *Phys. Chem. Glasses* 34 (1993) 52.
- 17. K. FUKUMI and S. SAKKA, *ibid.* 29 (1988) 1.
- 18. F. MIYAJI and S. SAKKA, J. Non-Cryst. Solids 137 (1991) 77.
- 19. J. A. RULLER and J. M. JEWELL, *ibid.* 175 (1994) 91.
- 20. K. FUKUMI and S. SAKKA, ibid. 95/96 (1987) 193.
- H. SCHOLZE, "Glass: Nature, Structure and Properties" (Springer Verlag, New York, 1990).
- S. K. DUBROVO, M. V. ZASOLOTSKAYA and T. S. TSEKHOMSKAYA, J. Appl. Chem. USSR (Engl. Transl.)
  42 (1969) 2295 (cited in reference 33).
- 23. T. S. TSEKHOMSKAYA and S. K. DUBROVO, *ibid.* **41** (1968) 468 (cited in reference 33).

- 24. S. K. DUBROVO, N. P. DANILOVA and T. S. TSEKHOMSKAYA, *Issled. Obl. Khim. Silik. Okislov* (1965) 11 (cited in reference 33).
- 25. E. I. GALANT, *Dokl. Akad. Nauk SSSR* 141 (1961) 417 (cited in reference 33).
- 26. A. O. IVANOV and E. I. GALANT, *Opt.-Mekh. Prom.* (1963) (3) 43 (cited in reference 33).
- 27. K. TAKAHASHI, N. MOCHIDA and G. HATTA, Yogyo Kyokaishi 83 (1975) 103 (cited in reference 33).
- 28. T. HANADA, S. GOTO, R. OTA and N. SOGA, Nippon Kagaku Kaishi 13 (1981) 1577 (cited in reference 33).
- 29. N. P. DANILOVA, Steklo (1) (1967) 89 (cited in reference 33).
- 30. N. P. DANILOVA and S. K. DUBROVO, J. Appl. Chem. USSR (Engl. Transl.) 40 (1967) 959 (cited in reference 33).
- 31. A. A. LISENENKOV and A. I. VASILEV, *Sov. J. Glass Phys. Chem. (Engl. Transl.)* **5** (1979) 485 (cited in reference 33).
- N. P. DANILOVA and S. K. DUBROVO, "Glass Formation of Silicates of Barium," 1971, 3509-71, Dep. VINITI (cited in reference 33).

- 33. N. B. BANSAL and R. H. DOREMUS, "Handbook of Glass Properties" (Academic Press, Orlando, Fl, 1990).
- 34. H. DOWEIDAR, Phys. Chem. Solids 53 (1992) 807.
- 35. W. J. DELL, P. J. BRAY and S. Z. XIAO, J. Non-Cryst. Solids 58 (1983) 1.
- 36. H. DOWEIDAR, J. Non-Cryst. Solids 194 (1996) 155.
- 37. Idem., Phys. Chem. Glasses 40 (1999) 85.
- 38. G. EL-DAMRAWI, W. MÜLLER-WARMUTH, H. DOWEIDAR and I. A. GOHAR, J. Non-Cryst. Solids 146 (1992) 137.
- 39. H. DOWEIDAR, M. S. MEIKHAIL and D. HOLLAND, *ibid.* **101** (1988) 280.

Received 30 December 1999 and accepted 18 December 2000